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The amplitude of oscillations of the freely wobbling kink in the �4 theory decays due to the emission of
second-harmonic radiation. We study the compensation of these radiation losses �as well as additional dissi-
pative losses� by the resonant driving of the kink. We consider both direct and parametric driving at a range of
resonance frequencies. In each case, we derive the amplitude equations which describe the evolution of the
amplitude of the wobbling and the kink’s velocity. These equations predict multistability and hysteretic tran-
sitions in the wobbling amplitude for each driving frequency—the conclusion verified by numerical simula-
tions of the full partial differential equation. We show that the strongest parametric resonance occurs when the
driving frequency equals the natural wobbling frequency and not double that value. For direct driving, the
strongest resonance is at half the natural frequency, but there is also a weaker resonance when the driving
frequency equals the natural wobbling frequency itself. We show that this resonance is accompanied by the
translational motion of the kink.
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I. INTRODUCTION

The kink of the �4 equation has a mode of internal oscil-
lation, commonly referred to as the wobbling mode. To
check whether the resonant excitation of the wobbling mode
could provide a channel for pumping energy into a kink-
bearing system, several authors have studied the dynamics of
�4 kinks subjected to resonant direct or parametric driving
and damping �1–4�. The damped-driven �4 theory arises in a
variety of physical contexts, in particular in the description
of topological-defect dynamics in media with temporally �5�
and spatially �6� modulated parameters or in the presence of
fluctuations �7�. Examples include the drift of domain walls
in ferromagnets in oscillatory magnetic fields �8�, the Brown-
ian motion of stringlike objects on a periodically modulated
bistable substrate �9�, ratchet dynamics of kinks in a lattice
of pointlike inhomogeneities �10�, and rectification in Jo-
sephson junctions and optical lattices �11�. The damped �4

equation driven by noise was used to study the production of
topological defects during the symmetry-breaking phase
transition �12� and the spatiotemporal stochastic resonance in
a chain of bistable elements �13�.

The mathematical analysis of the damped-driven kinks
started with the work of Kivshar et al. �5� who studied the
discrete parametrically pumped �4 system. Assuming that
the driving frequency lies above the phonon band and using
the method of averaging, they discovered the phenomenon of
kink death for sufficiently large driving strengths. Next, in an
influential paper �8�, Sukstanskii and Primak considered the
continuous �4 equation with a combination of direct and
parametric driving �see also a related discussion in �14��.
Using a variant of the Lindstedt-Poincaré technique, where

the velocity of the kink is adjusted so as to eliminate secular
terms at the lowest orders of the perturbation expansion in
powers of the wobbling amplitude, they detected a slow uni-
directional motion of the kink. In their analysis, Sukstanskii
and Primak were not concerned with terms higher than qua-
dratic in the amplitude of the wobbling; in fact, their ap-
proach is not suitable to deal with secular terms at the �3

order of the expansion — neither can it be utilized in the
case of the resonant driving frequency.

The resonant situation was studied by Quintero et al.
�2–4� who employed the method of projections. The method
assumes a specific functional dependence of the kink on the
“collective coordinates,” which in this case are the width and
the position of the kink. Inserting the chosen ansatz in the
partial differential equation and projecting the result onto the
neutral modes associated with the two degrees of freedom,
one obtains a two-dimensional dynamical system, a simpli-
fication from the infinite degrees of freedom present in the
original partial differential equation. �In the undamped un-
driven situation, the collective-coordinate approach was pio-
neered by Rice and Mele �15,16�.� The major advantage of
the method is that if the collective coordinates have been
chosen such that they capture the essentials of the dynamics,
one should be able to uncover the very mechanism of the
observed nonlinear phenomena—which is otherwise con-
cealed by an infinite number of degrees of freedom �see, e.g.,
�17��. The drawback of the collective-coordinate approach,
however, is that one cannot know beforehand which degrees
of freedom are essential and which can be omitted without a
qualitative impact on the kink’s dynamics. Specifically, the
role of radiation �which is neglected in the approach in ques-
tion� is not obvious and therefore one has no a priori guar-
antee that a radiationless ansatz is adequate. Another disad-
vantage is that the resulting two-dimensional dynamical
system is amenable to analytical study only in a very special
case �when the damping is set to zero �2–4��.
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In this paper, we approach the resonantly driven wobbling
kink from a complementary perspective. Instead of trying to
guess the most pertinent set of collective variables, we con-
struct the wobbler as a singular perturbation expansion using
a sequence of space and time scales. The nonsecularity con-
ditions yield equations for the slow-time evolution of the
wobbling amplitude and the kink velocity. This asymptotic
procedure has already been implemented for the unperturbed
�4 equation �18�; here we extend it to include damping and
driving terms. We consider both external �direct� and para-
metric driving, at several resonant frequencies. This includes
the cases considered by Quintero et al. in �2–4�. Although
the multiscale expansion cannot crystallize the “minimum
set” of degrees of freedom accountable for the observed be-
havior, it does not suffer from the arbitrariness associated
with the choice of collective-coordinate ansatz. The multi-
scale expansion is asymptotic, i.e., only valid for small am-
plitudes of the wobbling mode; however, in the small-
amplitude limit the expansion provides a faithful description
of the wobbler, independent of any assumptions and mode
preselections. Importantly, it does not neglect the radiation.

In all four cases of the direct and the parametric driving
considered in this paper, we derive an autonomous system of
equations for the amplitude of the wobbling mode and the
velocity of the kink. In each of the four cases, this dynamical
system turns out to exhibit stable fixed points corresponding
to the nondecaying wobbling of the kink. In some parameter
regimes, the amplitude of stable wobbling is nonunique and
may undergo hysteretic transitions between two nonzero val-
ues. In another case, the wobbling is necessarily accompa-
nied by translational motion of the kink. The conclusions of
our asymptotic analysis have been verified in direct numeri-
cal simulations of the corresponding partial differential equa-
tion. The numerical procedure we shall be using throughout
this paper was specified in �18�.

An outline of this paper is as follows. In Secs. II and III
we study the parametrically driven wobbling kink. In Sec. II
the frequency of the driver is chosen near the natural wob-
bling frequency of the kink, while in Sec. III we take the
forcing frequency close to double that value. In the next
section �Sec. IV�, we compare the mechanisms that are at
work in each of the two cases. Subsequently, we consider the
kink driven directly—first near half of its natural wobbling
frequency �Sec. V� and then close to the wobbling frequency
itself �Sec. VI�. Our conclusions are summarized in Sec. VII.
Here, in particular, we rank the four resonances according to
the amplitude of the resulting stationary wobbling and ac-
cording to the width of the resonant frequency range.

II. 1:1 PARAMETRIC RESONANCE

A. Asymptotic multiscale expansion

We start with the parametric driving of the form

1
2�tt − 1

2�xx + ��t − �1 + h cos��t��� + �3 = 0. �1�

This type of a driver was previously considered by Quintero
et al. �4�. The driving frequency � is assumed to be slightly
detuned from �0, the linear wobbling frequency of the un-
driven kink,

� = �0�1 + �� .

We remind the reader that �0=�3 �18�. Introducing a small
parameter � �which will be used to measure the amplitude of
the wobbling mode in what follows�, we choose the detuning
in the form

� = �2R ,

where R is of order 1. Since the frequency of the free non-
linear wobbling is smaller than �0 �see Eq. �44� in �18��, we
expect that the strongest resonance will occur not when �
=�0 but for some small negative �. �This will indeed be the
case; see Eq. �29� below.�

Next, the parameters ��0 and h�0 are the small damp-
ing coefficient and the driving strength, respectively. We
choose the following scaling laws for these parameters:

� = �2�, h = �3H , �2�

where � and H are quantities of order 1. This choice of
scalings will give rise to amplitude equations featuring the
driving term of the same order of magnitude as the linear and
the nonlinear damping terms �so that the stationary wobbling
regimes become possible�. We assume that the kink moves
with a slowly varying small velocity v=�V, where V
=V�T1 ,T2 , . . .� is of order 1.

Before embarking on the perturbation expansions, we
transform Eq. �1� to the comoving reference frame; this gives

1

2
�1 + ��2�		 − v�1 + ���
	 −

v	

2
�1 + ���
 −

1 − v2

2
�



− � + �3 = h cos��0	�� + � v�
 − � �1 + ���	. �3�

Here


 = x − �
0

t

v�t��dt�. �4�

We have also changed t→	, where

�t = �0	 .

We now expand the field ��
 ,	� about the kink �0
	 tanh 
,

� = �0 + ��1 + �2�2 + ¯ . �5�

We also define “slow” space and time variables

Xn 	 �n
, Tn 	 �n	, n = 0,1,2, . . . ,

with the standard shorthand notation �n=� /�Xn, Dn=� /�Tn.
Substituting Eq. �5� into the �4 equation �3�, making use of
the chain-rule expansions � /�
=�0+��1+�2�2+¯, � /�	
=D0+�D1+�2D2+¯, and equating coefficients of like pow-
ers of �, we obtain a sequence of linear partial differential
equations—just as we have done in the case of the free wob-
bling �18�. As in the case of the undamped-undriven �4

equation, the first-order perturbation is chosen to include
only the wobbling mode,

�1 = A�X1, . . . ;T1, . . .� sech X0 tanh X0 ei�0T0 + c.c., �6�

while the quadratic correction satisfies the partial differential
equation
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1
2D0

2�2 + L�2 = F2�X0, . . . ;T0, . . .� �7�

with

L = − 1
2�0

2 − 1 + 3�0
2 = − 1

2�0
2 + 2 − 3 sech2 X0

and

F2 = ��0�1 − D0D1��1 − 3�0�1
2 + VD0�0�1

+ 1
2D1V�0�0 − 1

2V2�0
2�0. �8�

As in �18�, the second-order perturbation is taken to consist
just of the harmonics present in the forcing function �8�,

�2 = �2
�0� + �2

�1�ei�0T0 + c.c. + �2
�2�e2i�0T0 + c.c. �9�

Here the coefficient functions �2
�0��X0�, �2

�1��X0�, and �2
�2��X0�

are found by solving the corresponding ordinary differential
equations. The solvability condition for the first of these
equations is D1V=0 and the solution is

�2
�0� = 2
A
2sech2 X0 tanh X0 + �V2

2
− 3
A
2�X0 sech2 X0

�10�

�see �18��. The solution of the last equation is

�2
�2� = A2f1�X0� , �11�

with

f1�X0� = 1
8 �6 tanh X0 sech2 X0

+ �3 − tanh2 X0 + ik0 tanh X0��J2
��X0� − J2

�� eik0X0

+ �3 − tanh2 X0 − ik0 tanh X0� J2�X0� e−ik0X0� . �12�

Here the function J2�X0� is defined by the integral

Jn�X0� = �
−�

X0

eik0
 sechn
 d
 �k0 = �8� , �13�

with n=2. The constant J2
� is the asymptotic value of J2�X0�

as X0→�,

Jn
� = lim

X0→�
Jn�X0� . �14�

Finally, the nonsecularity condition associated with the
equation for the coefficient function �2

�1��X0� is D1A=0; with
this condition in place, the solution �2

�1��X0� is bounded for
all X0 and decays as 
X0
→�. However, this decay is not fast
enough �18�; hence, the term �2

�1��X0�ei�0T0 has a quasisecu-
lar behavior at the infinities and has to be set to zero. This is
achieved by imposing the condition �18�

�1A + i�0VA = 0. �15�

Proceeding to the order �3, we find the partial differential
equation

1
2D0

2�3 + L�3 = F3, �16�

where

F3 = ��0�1 − D0D1��2 + ��0�2 − D0D2��1 + 1
2 ��1

2 − D1
2��1 − �1

3

− 6�0�1�2 + VD0�0�2 + VD0�1�1 + VD1�0�1

+ 1
2D2V�0�0 − 1

2V2�0
2�1 − �D0�1 + �V�0�0 − RD0

2�1

+ 1
2Hei�0T0�0 + c.c. �17�

The cubic correction �3 consists of harmonics present in the
function F3. The solvability condition for the first harmonic
gives the amplitude equation

iD2A +
�0

2

A
2A − �0�R +

V2

2
�A =

��0

8
H − i�A , �18�

while the solvability condition for the zeroth harmonic pro-
duces

D2V = − 2�V .

Letting a=�A and keeping in mind that D1A=0 and D1V
=0, we can rewrite these two equations in terms of the un-
scaled variables. This gives a system of two master equa-
tions:

ȧ = − �a − i�0 �a +
i

2
�0 
a
2a −

i

2
�0 v2a − i

�

8
�0 h + O�
a
5� ,

�19a�

v̇ = − 2�v + O�
a
5� , �19b�

where the overdots indicate differentiation with respect to t
and the complex coefficient  was evaluated in �18� as fol-
lows:

 = R + iI = − 0.8509 + i 0.04636. �20�

B. Reduced two-dimensional dynamics

Since a is complex, Eqs. �19� define a dynamical system
in three dimensions. However, Eq. �19b� will damp the vari-
able v until it is of order 
a
3 and this will make the term v2a
negligible in Eq. �19a�. Thus, after an initial transient, the
dynamics will be determined by the two-dimensional system
�19a� with v=0. Next, the natural wobbling amplitude a may
depend, parametrically, on 
. However, Eq. �15� and the fact
that v→0 as t grows imply that a may only depend on 
 via
X2, X3, etc. That is, the dependence is weak.

Letting a=re−i�, Eq. �19a� yields

ṙ = −
�0

2
I r3 + � �r0 sin � − r� , �21�

where r0= �
8 �0h /�. For all a with 
a
�r0, the right-hand side

of Eq. �21� is negative and so no trajectories can escape to
infinity. On the other hand, applying Dulac’s criterion �with
Dulac’s function equal to a constant�, one can easily ascer-
tain that Eq. �19a� with v=0 does not have closed orbits.
Hence, all trajectories must flow toward fixed points with
finite 
a
.

The fixed points of system �19a� are given by the equation
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�� + i�0 ��a −
i�0 

2

a
2a = −

�i�0

8
h . �22�

From Eq. �22�, the absolute value of a satisfies

H�
a
2� = h , �23�

where the function H�
a
2� is defined by

H2 =
64

�2 
a
2� �

�0
+

I

2

a
2�2

+ �� −
R

2

a
2�2� . �24�

Assume, first, that ���0, where

�0��� =
1

�0

I − �3R

R + �3I

� = − 1.139� . �25�

In this case H�
a
2� is a monotonically growing function,
with the range �0,��. Equation �23� has a single positive root

a
2 for any h and the dynamical system �19� has a single
stationary point. This fixed point is always stable.

Now let ���0. Here, the range of the function H�
a
2� is
still �0,��; however, the function grows for small and large
values of 
a
2 but decreases in the intermediate interval

a−
2� 
a
2� 
a+
2, where


a�
2 =
2

3

2� � ��2 − 3�2



2
, �26a�

� = R � − I
�

�0
, � = I � + R

�

�0
. �26b�

Consequently, Eq. �23� has a single root for small and large
values of h and three roots in the intermediate region defined
by h+�h�h−, where

h� = H�
a�
2� . �27�

For the dynamical system �19� this implies that there is only
one fixed point �which is stable� for small and large h, but as
h approaches the value h+ from below or the value h− from
above, two new fixed points are born in a saddle-node bifur-
cation. The region h+�h�h− is characterized by bistability;
an adiabatic variation of h will result in hysteretic transitions
between two stable fixed points.

The existence of hysteresis has been verified in the direct
numerical simulations of Eq. �1�, with �=0.01. Starting with
h=0 we increased h, past h−, and then reduced it back to
zero. At each h step, we used the final values of ��x� and
�t�x� from the previous-step simulation as initial conditions
for the new run. For each h we measured the value of a to
which the numerical solution settled after transients died out.
The resulting amplitude 
a
 is shown in Fig. 1; clearly visible
is the hysteresis loop. Figure 1 corresponds to simulations
with �=−0.03; for �=−0.02 the hysteresis loop is smaller
and for �=−0.01 it disappears completely. This is consistent
with the value of �0 given by Eq. �25�. The value
h−=0.008 at which the amplitude was recorded to jump from
the bottom to the top branch in Fig. 1 and the value
h+=0.005 at which it dropped back as h was decreased are

also in agreement with the corresponding predictions of the
amplitude equation. Namely, Eqs. �24�, �26�, and �27� give
h−=8.2�10−3 and h+=4.9�10−3.

For any given h, Eq. �23� can be regarded as a quadratic
equation for the detuning � where the coefficients are explicit
functions of 
a
2. There are two roots �1,2 for 
a
2 smaller than

ares
2, and none for 
a
2� 
ares
2, where 
ares
2 is a unique
positive root of the equation

64

�2 
ares
2� �

�0
+

I

2

ares
2�2

= h2. �28�

The value 
ares
 defined by Eq. �28� gives the largest ampli-
tude of the wobbling achievable for the given driving
strength h. The corresponding value of the detuning,

�res =
R

2

ares
2 � 0, �29�

ensures the strongest resonance. As was expected, the stron-
gest resonance is achieved with negative detuning.

C. 1:1 parametrically driven wobbler

For large times, the asymptotic expansion for the damped-
driven wobbler is given by Eq. �48� in �18� where we just
need to set v=0 and replace �0 with �,

��x,t� = tanh��1 − 3
a
2�
� + a sech
 tanh
 ei�t + c.c.

+ 2
a
2sech2 
 tanh
 + a2f1�
� e2i�t + c.c. + O�
a
3� .

�30�

Here, 
=x−x0, where x0 is a constant determined by initial
conditions and a is a stable fixed point of the dynamical
system �19a� with v=0 �a unique fixed point or one of the
two stable fixed points depending on whether h is outside or
inside the bistability interval �h+ ,h−��. The function f1�
� is
given by Eq. �12�. The interpretation of different terms in Eq.
�30� is the same as in the case of the freely wobbling kink
�18�.

h

|a|

0.0120.010.0080.0060.0040.0020

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

FIG. 1. The hysteresis loop observed in the 1:1 parametrically
driven �4 equation �Eq. �1�� with �=0.01 and �=−0.03. The driv-
ing strength h is increased from 0 to 0.0125 in increments of 5
�10−4 and then reduced back to 0 as indicated by arrows. Crosses
mark simulations of the Eq. �1�; continuous and dashed lines depict
stable and unstable fixed points of the amplitude equation �19a�
with v=0.
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Like the corresponding formula for the free wobbler, ex-
pansion �30� is only valid at distances 


=O�1�. For larger
distances one has to use the outer expansions

� = � 1 + �2�2 + �3�3 + ¯ , �31�

with coefficients �n determined as in Sec. V of �18�. The
analysis of the outer equations produces results equivalent to
those in �18�: the second-harmonic radiation propagates
away from the core of the kink at the group velocity, leaving
in its wake a sinusoidal wave with the frequency 2�,
wavenumber k0=�8, and constant amplitude of the order

a
2.

Unlike the case of the free wobbling of the kink, the fre-
quency of the oscillation is not determined by its amplitude
but is locked to the frequency of the driver, �. Another dif-
ference from the undamped-undriven case is that the driven
oscillations of the wobbler do not die out as t→�. Instead,
the amplitude of the oscillations approaches a nonzero con-
stant value, which is determined by the parameters of the
damping and the driving and—in the bistable region—by the
initial conditions. On the other hand, the asymptotic velocity
of the damped-driven wobbler is zero.

It is interesting to note that unlike in the case of the para-
metrically driven damped linear oscillator �19� or damped-
driven breather of the sine-Gordon or �4 equation �20�, there
is no threshold driving strength in the case of the damped-
driven wobbler. No matter how small is h, the amplitude a�t�
will not decay to zero as t→�.

III. 2:1 PARAMETRIC RESONANCE

A. Asymptotic expansion

It is a textbook fact that the strongest parametric reso-
nance is achieved when the parameter of the oscillator is
varied at double its natural frequency. With an eye to the
detection of the most efficient driving regime for the wob-
bling kink, we now consider the driving frequency close to
twice its natural wobbling frequency,

1
2�tt − 1

2�xx + ��t − �1 + h cos�2�t��� + �3 = 0. �32�

As before,

� = �0�1 + ��, � = �2R, � = �2� ,

but now we use a different scaling for h,

h = �2H .

We transform the equation in exactly the same way as we did
in the previous section; this yields

1

2
�1 + ��2�		 − v�1 + ���
	 −

v	

2
�1 + ���
 −

1 − v2

2
�



− � + �3 = h cos�2�0	�� + � v�
 − � �1 + ���	.

The perturbation expansion is unchanged from the
undamped-undriven case at O��1�. With the addition of the
�2-strong driving, the equation at O��2� acquires additional
terms on the right-hand side as compared to Eq. �7�,

1

2
D0

2�2 + L�2 = F2�X0, . . . ;T0, . . .� +
H

2
�0 e2i�0T0 + c.c.

Here F2 is as in Eq. �8�. The zeroth- and the first-harmonic
components of �2 are not affected by this extra term.
Namely, assuming that the solution is of the form �9� and
setting D1V=0, we get Eq. �10� for �2

�0� while, imposing
D1A=0, Eq. �15� produces �2

�1�=0. As for the coefficient
function �2

�2�, we obtain

�2
�2� = A2f1�X0� + Hf2�X0� , �33�

where the function f2�X0� satisfies

�L − 6�f2�X0� = 1
2 tanh X0. �34�

We note that the value of 6 lies in the continuous spectrum of
the operator L, and so in order to determine f2�X0� uniquely,
one has to impose two additional conditions fixing the coef-
ficients of two bounded homogeneous solutions that can be
added to f2. We do this by requiring the absence of incoming
radiation. The particular solution of Eq. �34� that obeys these
radiation boundary conditions is

f2�X0� = − 1
12 f1�X0� + 1

24 tanh X0 �2 sech2 X0 − 3� , �35�

where the function f1�X0� is given by Eq. �12�. In what fol-
lows, we will use the fact that f2�X0� is an odd function.

The first term in the right-hand side of Eq. �33� describes
the familiar second-harmonic radiation from the freely wob-
bling kink. The second term consists of the induced second-
harmonic radiation and a standing wave—also excited by the
forcing.

At the order �3, we get Eq. �16� where F3 is given by Eq.
�17� with the term 1

2Hei�0T0�0 replaced with 1
2He2i�0T0�1.

The amplitude equation for A, which arises as the solvability
condition for the first harmonic, is now

iD2A +
�0

2

A
2A − �0�V2

2
+ R�A =

�0�

2
HA� − i�A ,

�36�

where

� = �
−�

� 1

2
sech2 X0 tanh2 X0

− 6 sech2 X0 tanh3 X0 f2 �X0��d X0.

The imaginary part of this integral is

�I = 1
12I = 0.003 863.

For the real part we find, numerically,

�R = 0.5958.

The solvability condition for the zeroth harmonic gives

D2V = − 2�V .

We finally write the amplitude and the velocity equations
in terms of the natural variables a=�A and v=�V and the
unscaled time t �as in the previous section� as follows:
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ȧ = − �a − i�0� a + 1
2 i�0 
a
2a

− 1
2 i�0 v2a − 1

2 i�0 �ha� + O�
a
5� , �37a�

v̇ = − 2� v + O�
a
5� . �37b�

B. Reduced dynamics in two dimensions

As in the previous case of the 1:1 parametrically driven
wobbler, the velocity tends to zero as t→� and the evolution
of a�t� is governed by the dynamical system �37a� with
v=0. This two-dimensional dynamical system does not have
periodic orbits, as one can readily check using Dulac’s crite-
rion. Letting a=re−i� and �= 
�
ei Arg �, Eq. �37a� yields

ṙ = − �r +
�0

2
I r �r0

2 sin�2� + Arg �� − r2� , �38�

where r0
2= �
�
 /I�h. Since the right-hand side of Eq. �38� is

negative for all a with 
a
�r0, no trajectories can escape to
infinity. Therefore, all trajectories should flow to one of the
fixed points. The fixed points are given by the equation

�a + i�0�a − i
�0

2

a
2a = − i

�0�

2
ha�. �39�

One fixed point is trivial, a=0; this fixed point is stable if
h�h+, where


�
2

4
h+

2 = � �

�0
�2

+ �2, �40�

and unstable otherwise. For the nontrivial points, we get

H�
a
2� = h , �41�

where

H2 =
4


�
2� �

�0
+

I

2

a
2�2

+ �� −
R

2

a
2�2� .

Assume, first, that ���0, where

�0��� =
1

�0

I

R
� = − 0.03146� . �42�

The function H�
a
2� with � in this parameter range is mono-
tonically growing, from h+ to infinity. Equation �41� has one
root provided h�h+, and no roots otherwise. Consequently,
in the region h�h+ the dynamical system �37� has two stable
fixed points a1 and −a1, where


a1
2 =
2� + �
�
2h2 − 4�2



2
, �43�

with � and � as in Eq. �26b�. In the region h�h+, the
�stable� fixed point at the origin is the only fixed point avail-
able in the system. �Thus we have a supercritical pitchfork
bifurcation as h is increased through h=h+.�

Assume now ���0. As 
a
2 grows from zero to infinity,
the function H decreases from h+ to its lowest value of h−,
where


�
2

4
h−

2 =
1



2
�R

�

�0
+ I ��2

, �44�

and then increases to infinity. Therefore, for ���0, the dy-
namical system �37� has one fixed point at the origin for
small driving strengths 0�h�h−; five fixed points a1, a2, 0,
−a1, and −a2 for the intermediate strengths h−�h�h+; and
three fixed points a1, 0, and −a1 for h�h+. Here h+ is given
by Eq. �40� and h− is given by Eq. �44�. The nontrivial fixed
points a1 and a2 are born in a saddle-node bifurcation at
h=h−. At h=h+, a subcritical pitchfork bifurcation occurs;
here, the point a2 merges with the trivial fixed point. There-
fore, out of the two nontrivial fixed points a1 and a2, the
stable one is a1, i.e., the fixed point with the larger absolute
value—given by Eq. �43�. In summary, for h�h− all trajec-
tories flow to the origin; for h�h+, they are attracted to the
nontrivial fixed points �a1; and, finally, in the region
h−�h�h+, we have a tristability between a=0 and
a= �a1.

These predictions of the amplitude equation were com-
pared to results of direct numerical simulations of Eq. �32�,
with �=0.005. As in the previous section, we increased h,
past h+, and then reduced it to values under h−. Figure 2
shows the hysteresis loop arising for �=−0.005. For
�=−0.003 the hysteresis was less pronounced and for �=0 it
was seen to disappear completely. These observations are
consistent with the value of the critical detuning �42� which,
for �=0.005, equals �0=−1.573�10−4. The bifurcation val-
ues h� observed in simulations with �=−0.005 �h+=0.019
and h−=0.011� are also in agreement with the predictions of
the amplitude equation �which gives h+=0.01938 and
h−=0.01059�.

C. 2:1 parametrically driven wobbler

Restricting ourselves to the t→� asymptotic behavior of
��x , t�, the leading orders of the perturbation expansion in
the case of the subharmonic response are

h

|a|

0.0240.020.0160.0120.008

0.16

0.12

0.08

0.04

0

FIG. 2. The hysteresis loop in the 2:1 parametrically driven �4

equation �Eq. �32�� with �=0.005 and �=−0.005. The driving
strength is increased from 0.005 to 0.025 in increments of 8
�10−4 and then reduced back to 0.005. Crosses mark results of
simulations of Eq. �32�. The continuous and the dashed lines show
the stable and the unstable fixed points of the amplitude equation
�37a� with v=0.
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��x,t� = tanh��1 − 3
a
2�
� + a sech
 tanh
 ei�t + c.c.

+ 2
a
2sech2 
 tanh


+ �a2f1�
� + hf2�
��e2i�t + c.c. + O�
a
3� . �45�

Here, 
=x−x0; a is a stable fixed point �zero or nonzero�
given by one of the roots of Eq. �39�; and the functions f1
and f2 are defined by Eqs. �12� and �35�, respectively. The
main difference from the case of the 1:1 parametric reso-
nance is that the amplitude of the wobbling approaches a
nonzero value only if the driver’s strength exceeds a certain
threshold; this threshold value is given by h+ in the region
���0 and by h− in the region ���0. If h lies below the
threshold, the wobbling dies out and we need to set a=0 in
Eq. �45�. We also note that the 2:1 resonant driving excites a
standing wave and radiation with the frequency 2� and an
amplitude proportional to h �the f2 term in Eq. �45��.

Like Eq. �30� of the previous section, expansion �45� is
only valid on the length scale 
=O�1�. To describe the wave-
form at longer distances, we need to invoke the outer expan-
sions �31�. Evaluating the coefficient of the term �2 in these
expansions and matching it to the “inner” expression �33� in
the overlap region, we obtain

�2 = � J B� ei�2�0T0�k0X0� + c.c. −
H

4
cos�2�0T0� , �46�

where the top and the bottom signs pertain to the regions
X0�0 and X0�0, respectively. In Eq. �46�, J= �2− ik0�J2

�

and the functions B�=B��X1 ,X2 , . . . ;T1 ,T2 , . . .� satisfy

B��0,0, . . . ;T1,T2, . . .� = A2�0,0, . . . ;T2,T3, . . .� −
H

96
.

�47�

Equation �47� represents the boundary condition for the
amplitudes B�; the equations of motion for these variables
arise at the order �3 and coincide with Eqs. �33� of �18�.
The solution of these equations with the boundary condition
�47� is qualitatively similar to the solution with the
“undriven” boundary condition B��0,0 , . . . ;T1 ,T2 , . . .�
=A2�0,0 , . . . ;T2 ,T3 , . . .�. Namely, we have two outward-
propagating waves leaving the amplitudes B� equal to the
constant A2−H /96 in their wake.

IV. HARMONIC VERSUS SUBHARMONIC PARAMETRIC
RESONANCE: QUALITATIVE COMPARISON

With the amount of detail that we had to provide to justify
our conclusions and derivations, the resonance mechanisms
of the driven wobbling kink may not be easy to crystallize.
The purpose of this short section is to discuss the two para-
metric resonances qualitatively—in particular, to comment
on their atypical hierarchy.

We observed that the amplitude 
a
 is of order h1/3 in the
case of the harmonic resonance �i.e., the resonance arising
when the driving frequency �d is near �0� but only O�h1/2�
in the case of the subharmonic resonance �the resonance aris-
ing for �d�2�0�. Thus the harmonic resonance is stronger
than the subharmonic one, and this is precisely the opposite
behavior to what we might naively expect based on our in-
tuition about the parametric driving.

To explain this surprising behavior qualitatively, we write
the term h cos�n�t�� in Eqs. �1� and �32� as h cos�n�t��0
plus terms of order ha and smaller. This representation re-
veals that what was introduced as a parametric driver is, to
the leading order, an external �direct� driving force. This
driving force is nonhomogeneous, i.e., its magnitude and di-
rection vary with the distance, and it has odd spatial parity.
When n=1, the frequency of this driving force coincides
with the natural frequency of the wobbler and its spatial par-
ity coincides with the parity of the wobbling mode �which is
also odd�. As a result, we have a strong direct resonance.

When n=2, the external force h cos�2�t��0 is not in reso-
nance with the wobbling frequency. However the function
h cos�2�t� acts as a parametric driver on the next term in the
expansion of � — that is, the product h cos�2�t���1 has a
component with the resonant frequency. Importantly, this
term has the “correct” odd parity as a function of 
.

In addition, the odd-parity force h cos�2�t��0 generates
odd-parity radiation and the odd-parity standing wave, both
with the frequency 2�. This radiation and standing wave
also couple to the wobbling mode, via the term �3�0�1�2 in
Eq. �32�. This constitutes a concurrent driving mechanism.
Since each of the two mechanisms is indirect �i.e., requires
the wobbling mode as a mediator for the frequency halving�
and since the resulting effective driving strength is propor-
tional to the amplitude of the wobbling mode �assumed
small�, the response to the frequency 2� is weaker than to
�.

V. 1:2 DIRECT RESONANCE

A. Perturbation expansion

We start with the direct driving at half the natural wob-
bling frequency. This and the following case of the 1:1 direct
resonance were previously considered by Quintero et al.
�2,3� and so we will be able to compare our results to theirs.
The equation is

1

2
�tt −

1

2
�xx + ��t − � + �3 = h cos��

2
t� , �48�

where, as in the previous sections, �=�0�1+��. As before,
we change the time variable, so that �t=�0	 and transform
the equation to the moving frame,

1

2
�1 + ��2�		 − v�1 + ���
	 −

v	

2
�1 + ���
 −

1 − v2

2
�

 − � + �3 = h cos��0

2
	� + v��
 − ��1 + ���	. �49�
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Keeping our standard scalings for the small parameters �
and �,

� = �2�, � = �2R ,

we choose a fractional-power scaling law for h,

h = �3/2H .

This scaling will be shown to produce a balance of damping
and driving terms at the leading order in the amplitude equa-
tion. Expanding � in powers of �1/2,

� = �0 + ��1 + �3/2�3/2 + �2�2 + �5/2�5/2 + ¯ ,

where �0=tanh X0, and substituting in Eq. �49� we obtain
Eq. �6� for �1. The partial differential equation arising at
O��3/2� is

1

2
D0

2�3/2 + L�3/2 =
H

2
ei��0 /2�T0 + c.c.

Discarding the homogeneous solutions, the solution �3/2 to
this equation can be chosen in the form �3/2=�3/2

�1/2�ei��0/2�T0

+c.c., where the coefficient function �3/2
�1/2� satisfies the linear

nonhomogeneous equation

�L −
3

8
��3/2

�1/2� =
H

2
.

Since 3
8 is not an eigenvalue of the operator L, this equation

has a unique bounded solution. To determine it, we note that
two homogeneous solutions of this equation, i.e., solutions of
�L−3 /8�y=0, are given by Segur’s formula

yp�X0� =
1

�1 + ip��2 + ip�
eipX0

��2 − p2 − 3ip tanh X0 − 3 sech2 X0� �50�

with p= � i�13 /4 �21�. Using these in the variation of pa-
rameters, we obtain

�3/2
�1/2� = 4

13H�1 − 8 sech2 X0� .

The term �3/2
�1/2�ei��0 /2�T0 in the expansion of the wobbling

kink represents the background stationary wave induced by
the driver.

The equations arising at O��2� are the same as for the free
wobbler and the 1:1 parametric resonance �Eqs. �7� and �8��.
Hence the coefficients of the harmonic components of �2 are
the same as in the undamped-undriven case. Namely, impos-
ing the solvability conditions D1V=0 and D1A=0, we obtain
Eq. �10� for �2

�0� and Eq. �11� for �2
�2�. We also impose Eq.

�15� to obtain �2
�1�=0.

At the order �5/2 we have the equation
1
2D0

2�5/2 + L�5/2 = − 6�0�1�3/2 + VD0�0�3/2.

Its solution consists of the 1
2 th and the 3

2 th harmonics with
the coefficient functions

�5/2
�1/2� = HAua�X0� + i�0HVub�X0� ,

�5/2
�3/2� = HAuc�X0� ,

respectively. Here the functions ua, ub, and uc satisfy

�L − 3
8�ua�X0� = − 24

13�1 − 8 sech2 X0�sech X0 tanh2 X0,

�L − 3
8�ub�X0� = 32

13sech2 X0 tanh X0,

and

�L − 27
8 �uc�X0� = − 24

13�1 – 8 sech2 X0� sech X0 tanh2 X0.

In order to determine uc�X0� uniquely, we impose the radia-
tion boundary conditions. �These are necessary because the
value 27

8 lies in the continuous spectrum of the operator L.�
The functions ua and uc are even, while ub is odd. These
three functions can be easily found by solving the above
nonhomogeneous boundary-value problems numerically.

Proceeding to the order �3, we find Eq. �16�, where F3 is
given by Eq. �17� with the term 1

2Hei�0T0�0+c.c. replaced
with −3�0�3/2

2 . The solvability conditions for this equation
are

D2V = − 2�V �51�

for the zeroth harmonic, and

D2A = − �A − i�0 RA + i
2�0 
A
2A − i

2�0V2A + 60
169 i�0�H2

�52�

for the first harmonic. The latter equation includes both the
damping and the driving terms and so the resulting master
equations could be expected to capture the essentials of the
nearly stationary wobbling of the kink �i.e., wobbling in the
vicinity of the fixed point of the amplitude equations, which
arises due the balance of the damping and the driving terms�.
However the description provided by these amplitude equa-
tions — while being qualitatively correct — turns out to be
insufficiently accurate when compared to numerical simula-
tions of the full partial differential equation �48�. �The source
of this inaccuracy will be clarified below.� In search of
greater accuracy, we shall proceed to higher orders.

The solution of Eq. �16� has the form

�3 = �3
�0� + �3

�1�ei�0T0 + c.c. + �3
�2�e2i�0T0 + c.c.

+ �3
�3�e3i�0T0 + c.c.

The function �3
�2� is calculated to be zero; the coefficient of

the zeroth harmonic is given by

�3
�0� = 16

169H2�45X0 sech2 X0 − 3 tanh X0

− 128 sech2 X0 tanh X0� ,

and the one for the first-harmonic component is

�3
�1� = − �2AX0 sech X0 tanh X0 + 
A
2Aud�X0�

− 2
3 i�0�� + i�0R��3 − 4 sech2 X0� + H2ue�X0� , �53�

where the functions ud�X0� and ue�X0� are the bounded solu-
tions of the following nonhomogeneous equations:

�L − 3
2�ud = 3

2 sech X0 tanh X0

+ 6 sech X0 tanh2 X0 �3X0 sech2 X0

− 5
2sech2 X0 tanh X0 − f1�X0�� ,
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�L − 3
2�ue = − 48

169H2 tanh X0 �1 – 8 sech2 X0�2

+ 180
169� sech X0 tanh X0. �54�

Since �L−3 /2� is a parity-preserving operator while the
right-hand sides of the above equations are given by odd
functions, and since the homogeneous solution yw
=sech X0 tanh X0 is also an odd function, it follows that the
nonhomogeneous solutions ud and ue are both odd. This is
the only fact about ud and ue that we will need in this
section—we do not need to know any details of these func-
tions here. Nevertheless, we do evaluate the solution ud as it
will be required later on, in the study of the 1:1 directly
driven kink �Sec. VI�; we evaluate it using the variation of
parameters and numerical integration. The nonhomogeneous
solution is defined up to the addition of an arbitrary multiple
of yw; however, this extra degree of freedom is fictitious as it
can always be eliminated by a suitable rescaling of �. �Ac-
cordingly, the extra term proportional to yw cancels in the
integral � where it appears in Sec. VI and does not contrib-
ute to the amplitude equations �75�.�

To eliminate the quasisecular term proportional to
X0 sech X0 tanh X0 in Eq. �53�, we set �2A=0.

It will not be necessary to calculate the third-harmonic
component �3

�3� as this does not contribute to the zeroth or
the first harmonics at O��4�, and hence does not affect the �4

correction to the amplitude equations. Similarly, we shall not
calculate �7/2 as it only contains fractional harmonic compo-
nents, which cannot impinge on the amplitude equations at
O��4�. Hence we skip the order �7/2.

At O��4�, we obtain

1
2D0

2�4 + L�4 = F4, �55�

where

F4 = ��0�1 − D0D1��3 + ��0�2 − D0D2��2 + 1
2 ��1

2 − D1
2��2

+ ��0�3 − D0D3��1 + ��1�2 − D1D2��1 − 3�1
2�2

− 6�0�1�3 − 6�0�3/2�5/2 − 3�0�2
2 + VD0�0�3

+ VD0�1�2 + VD0�2�1 + VD1�0�2 + VD1�1�1

+ VD2�0�1 + 1
2D2V�0�1 + 1

2D3V�0�0 − 1
2V2�0

2�2

− V2�0�1�1 − �D0�2 − �D1�1 + �V�0�1 − RD0
2�2

+ VRD0�0�1.

The corresponding solvability conditions are

D3V = 0 �56�

and

D3A = − 1
2 i�0�H2A , �57�

where

� = �
−�

�

sech X0 tanh X0−
96

169
�45X0 sech2 X0 − 3 tanh X0

− 128 sech2 X0 tanh X0�sech X0 tanh2 X0

−
24

13
tanh X0 �1 − 8 sech2 X0�ua�X0�

−
24

13
tanh X0 �1 − 8 sech2 X0�uc�X0�

−
96

169
sech X0 tanh X0 �1 − 8 sech2 X0�2� dX0.

Numerically,

� = �R + i�I = − 7.4656 − i1.6785.

Expanding the derivative � /�	 as D0+�D1+�2D2+¯ and
recalling that d	 /dt=1+�, we combine Eqs. �52� and �57�.
We also combine Eqs. �51� and �56�. This yields a system of
two master equations:

ȧ = − �a − i�0� a + i
�0

2

a
2a − i

�0

2
v2a

+ i
60

169
��0 h2 −

1

2
i�0 �h2a + O�
a
5� , �58a�

v̇ = − 2�v + O�
a
5� . �58b�

It is essential to combine the slow-scale equations in this
way, rather than solving the individual equations with the
assumption that the different scales are independent. Solving
individual equations separately would be illegitimate be-
cause in integrating the equations one is covering more than
one time scale. For example, solving Eqs. �56� and �57� we
would be integrating over the scale T3, which includes a
shorter time scale T2.

All terms in the right-hand side of Eq. �58a� are of order

a
3, except the last term which is O�
a
4�. This last term is
the correction coming from the fourth order of the perturba-
tion expansion. As we have already mentioned, the ampli-

h

|a|

0.010.0090.0080.0070.0060.005

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

FIG. 3. The hysteresis loop in the 1:2 directly driven �4 equa-
tion �Eq. �48�� with �=0.001 and �=−0.002. The driving strength h
is increased from 0.005 to 0.01 in increments of 0.0002 and then
reduced back to 0.005 �as indicated by the arrows�. Crosses mark
results of simulation of the partial differential equation �Eq. �48��.
The continuous and the dashed lines depict the stable and the un-
stable fixed points of the amplitude equation �58a� with v=0.
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tude equations �58� without this term produce an inaccurate
description of the dynamics in the region of interest �i.e., in
the vicinity of the fixed points�. On the other hand, if the
above fourth-order term is included, the predictions of the
amplitude equations �58� turn out to be in good agreement
with results of the direct numerical simulations of the full
partial differential equation �48� �see Fig. 3�. The substantial
improvement in accuracy is due to the large value of the
coefficient �.

B. Reduced two-dimensional system

Introducing the notation

�� = � −
�I

2
�0 h2, �� = � +

�R

2
h2, h� = −

480

169
h2,

the amplitude equation �58a� can be written as

ȧ = − ��a − i�0 ��a + i


2
�0 
a
2a −

i

2
�0 v2a

− i
�

8
�0h� + O�
a
5� , �59�

which has the same form as the amplitude equation for the
1:1 parametric resonance �19a�. Consequently, the dynamics
of the 1:2 directly driven wobbling kink will have some
similarities with the dynamics of the wobbler driven by the
1:1 parametric force.

According to Eq. �58b�, the velocity will be damped until
it is so small �O�
a
3�� that it can be disregarded in Eq. �58a�;
hence, after an initial transient the dynamics will be gov-
erned by Eq. �58a� with v=0. Similarly to Eq. �19� with
v=0, Eq. �58a� does not have closed orbits. All trajectories
crossing the circle 
a
= 60

169��0 h2 /� flow inward and so no
trajectories can escape to infinity. Therefore, all trajectories
must flow toward fixed points. If a is a fixed point, the ab-
solute value 
a
 satisfies

h41

4

�
2 −

�2


a
2� 60

169
�2�

+ h2�R �� −
1

2
R 
a
2� − �I � �

�0
+

1

2
I 
a
2��

+ �� −
1

2
R 
a
2�2

+ � �

�0
+

1

2
I 
a
2�2

= 0. �60�

The left-hand side of this equation is a biquadratic in h.
Solving for h we obtain an explicit expression for
h=h1,2�
a
2�; the roots 
a
2 are found by inverting these ex-
plicit functions for each �, �, and h. The lower branch of the
biquadratic is plotted in Fig. 3 along with results from the
numerical simulations of the full partial differential equation
�48�. We note that, as in the 1:1 parametrically driven �4

equation, there is no threshold driving strength for the exis-
tence of the nonzero wobbling amplitude here.

Here it is appropriate to recall that � and � were assumed
to be of the same order while h is O��3/4�. As in the case of
system �19a�, the absence or the presence of hysteresis in the
dynamics depends on whether � is above or below the criti-

cal value �0��� given by Eq. �25�. If the difference �−�0 is
positive and of order �, there is only one root 
a
 for each
value of h. The corresponding fixed point is obviously stable.
If, on the other hand, the difference �−�0 is negative �but
still of order ��, we have three roots 
a
2 for each
h=O��3/4� in the interval �h+ ,h−�. These roots correspond to
three fixed points, two of which are stable �see Fig. 3�. The
values h+ and h− at which the subcritical bifurcations occur,
are given, approximately, by

h�
2 =

1

c0
�P� + �P�

2 + 2c0Q�� , �61�

where

P� =
1

18
�c1�3�2 − 5�2� + 6�� � �4c1� − 3����2 − 3�2� ,

Q� =
1

27
����2 + 9�2� � ��2 − 3�2�3/2� ,

c0 = 2�30�

169
�2



4 = 0.3280,

c1 = R�R + I�I = 6.2747,

� = 

2 ��R � − �I
�

�0
� ,

and � and � are defined by Eq. �26b�. For �=10−3 and
�=−2�10−3, the bifurcation values obtained from Eq. �61�
are h+=6.74�10−3 and h−=7.78�10−3 while the numerical
simulations of the full partial differential equation give
6.6�10−3�h+�6.8�10−3 and 7.8�10−3�h−�8.0�10−3.
For �=−3�10−3, the simulations show a more pronounced
hysteresis loop, whereas for �=−1�10−3 the hysteresis was
seen to disappear. �In both cases � was kept at 10−3.� These
observations are consistent with the value of �0 given by the
amplitude equations. �For �=10−3, Eq. �25� gives
�0=−1.1�10−3.�

C. 1:2 directly driven wobbler

Finally, we produce the first several orders of the pertur-
bation expansion for the 1:2 directly driven wobbling kink.
We have

��x,t� = tanh��1 − 3
a
2�
� + a sech
 tanh
 ei�t + c.c.

+ 4
13h�1 − 8 sech2
� ei��/2�t + c.c.

+ 2
a
2sech2 
 tanh 
 + a2f1�
� e2i�t + c.c.

+ O�
a
5/2� . �62�

When t is sufficiently large, the variable 
 in this expression
equals x−x0 �where x0 is a constant determined by the initial
conditions� and a is a stable fixed point of system �58a� with
v=0 �a unique fixed point or one of the two stable fixed
points depending on whether h is outside or inside the bista-
bility interval �h+ ,h−�.�
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The interpretation of terms in Eq. �62� is the same as in
the previous sections. The frequency of the wobbling �where
the wobbling mode is given by the sum of the third and the
second terms in the first line in Eq. �62�� is locked to double
the driving frequency. The term proportional to h in the sec-
ond line describes a standing wave induced by the driver. As
in the previous sections, expansion �62� is only valid at the
length scale 


=O�1�. The standard analysis involving outer
expansions demonstrates that, for larger distances, we have
groups of second-harmonic radiation waves moving away
from the kink and leaving in their wake a sinusoidal wave-
form of constant amplitude.

D. Qualitative analysis

The driving term h cos� �
2 t� is not in resonance with the

natural frequency of the wobbler nor does its parity coincide
with the parity of the wobbling mode. Therefore the ability
of the 1:2 direct driving to sustain the wobbling is surprising
and requires a qualitative explanation.

The authors of �2� proposed that the mechanism which
brings about the unexpected superharmonic resonance is the
coupling of the translation and the wobbling modes. Our
explanation for this phenomenon is rather different and un-
related to the translation mode. The way the driver affects the
wobbler is by exciting an even-parity standing wave ��3/2� at
the frequency � /2 which then undergoes nonlinear fre-
quency doubling and parity transmutation through the term
�3�0�3/2

2 in Eq. �48�. This latter term serves as an effective
driver to the wobbling mode; it has the resonant frequency
and the “correct” parity.

Since this mechanism involves a two-stage process and
the resulting effective driving strength is proportional to h2,
this type of driving produces a relatively weak response.

E. Chaotic wobblers?

The authors of Refs. �2,3� observed chaotic kink dynam-
ics in numerical simulations of the 1:2 directly driven wob-
bling kink. An indirect confirmation of the existence of cha-
otic motions comes also from the collective-coordinate
approach which predicts an unbounded growth of the kink’s
width, energy, and velocity at resonance �2,3�. On the other
hand, our amplitude equations �58� with ��0 reduce to a
two-dimensional dynamical system, which can obviously not
exhibit any chaotic attractors.

To find an explanation for this disagreement, we have
carried out a series of numerical simulations of the partial

differential equation �48� at a range of driving strengths and
damping coefficients. In all our experiments, we confined
ourselves to zero detuning, �=0. We could not detect any
sign of chaotic dynamics for h smaller than a certain mini-
mum value, not even in the undamped case. However for h
greater or equal than 0.05 and sufficiently small �, our nu-
merical simulations did reveal kinks performing erratic mo-
tion, where initially close profiles were seen to diverge ex-
ponentially fast. For h=0.05, 0.06, and 0.08, chaos was
observed in simulations with � smaller or equal to 10−3,
2�10−3, and 6�10−3, respectively, whereas the same se-
quence of h values paired with �=2�10−3, 3�10−3, and
7�10−3, respectively, did not feature any chaotic trajecto-
ries. Therefore chaotic attractors may only arise when the
damping is extremely weak, much weaker than O�h4/3�. This
could be the reason why the chaotic dynamics is not captured
by our amplitude equations �58� which have been derived on
the assumption that h=O��3/2� and �=O��2�.

The description of chaotic motions by means of amplitude
equations is a topic of future research. We plan to verify
whether our asymptotic method will remain applicable in
this situation, with the appropriate adjustment of the scaling
laws of the variables a and v parameters of the damping and
driving.

VI. 1:1 DIRECT RESONANCE

A. Multiscale expansion

Finally, we explore the effect of the direct driving near the
natural wobbling frequency of the kink. The equation is

1
2�tt − 1

2�xx + ��t − � + �3 = h cos��t� , �63�

where �=�0�1+��. We let a=�A and adopt the following
scalings for the three small parameters:

h = �H, � = �2�, � = �2R . �64�

This time, we assume that the velocity is scaled as v=�2V
�and not as v=�V�. We shall find a nontrivial evolution equa-
tion for v, and with the above scalings, the leading-order
dynamics of a and v will occur on the same time scale.
While other scalings could be investigated, the variables v
and a would then change on different time scales and so
would effectively be decoupled for small �. Therefore, the
chosen scalings correspond to the richest, three-dimensional,
dynamics. Rescaling the time so that �t=�0	 and transform-
ing to the moving frame as in Eq. �4�, Eq. �63� becomes

1

2
�1 + ��2�		 − v�1 + ���
	 −

v	

2
�1 + ���
 −

1 − v2

2
�

 − � + �3 = h cos��0	� + v��
 − ��1 + ���	. �65�

We expand � as in Eq. �5�. With the driving amplitude of the order �, the linear per-
turbation consists of the wobbling mode and a standing wave
excited by the driver,
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�1 = �A sech X0 tanh X0 + H�1 − 2 sech2 X0�� ei�0T0 + c.c.

Next, at O��2�, we obtain Eq. �7� with

F2 = ��0�1 − D0D1��1 − 3�0�1
2.

Discarding solutions to the corresponding homogeneous
equation, the solution to Eq. �7� will consist only of the
harmonics present in the forcing, i.e., it will have the form
�9�. The solvability condition for the first-harmonic compo-
nent is D1A=0; assuming that this condition is in place, we
obtain �2

�1��X0�=−�1A X0 sech X0 tanh X0. To avoid the qua-
sisecular behavior at infinity we impose �1A=0, which re-
sults in

�2
�1� = 0. �66�

The other two harmonic components of the quadratic correc-
tion �2 have the coefficients

�2
�0� = 
A
2sech2 X0 �2 tanh X0 − 3X0�

+ H2�9X0 sech2 X0 − 3 tanh X0 − 8 sech2 X0 tanh X0�

− 4H�A + A�� sech X0 �1 + sech2 X0� �67�

and

�2
�2� = A2f1�X0� + AHf3�X0� + H2f4�X0� , �68�

where f1 is as in Eq. �12�, and the functions f3 and f4 are
defined by

f3�X0� = 1
2sech X0 − 4 sech3 X0 − 15

32 ik0

��3 − tanh2 X0 + ik0 tanh X0�

��J1
��X0� − J1

�� eik0X0

+ 15
32 ik0�3 − tanh2 X0 − ik0 tanh X0� J1�X0� e−ik0X0

�69�

and

f4�X0� = − 7
2 f1�X0� + 1

4 tanh X0 �3 − 2 sech2 X0� . �70�

The function J1�X0� is given by integral �13� with n=1. One
can show that f3�X0� is an even function and f4�X0� is odd.

We note a quasisecular term �9H2−3
A
2�X0 sech2 X0 in
Eq. �67�; this term does not lead to the nonuniformity of the
expansion as it can be incorporated in the variable width of
the kink �see Eq. �80� below�.

The partial differential equation arising at the order �3 is
Eq. �16� with F3 given by

F3 = ��0�1 − D0D1��2 + ��0�2 − D0D2��1 + 1
2 ��1

2 − D1
2��1 − �1

3

− 6�0�1�2 + VD0�0�1 + 1
2D1V�0�0 − �D0�1 − RD0

2�1.

The solvability conditions give rise to amplitude equations

D1V = 0 �71�

for the zeroth harmonic and

D2A + �A + i�0 RA − 1
2 i�0 
A
2A − 3

4�VH

+ 1
2 i�0� H2A + 1

2 i�0�H2A� = 0 �72�

for the first harmonic. In Eq. �72�, we have introduced

� = �
−�

�

sech X0 tanh X0 �− 6 tanh X0 �1 − 2 sech2 X0� f3�X0�

− 6 sech X0 tanh2 X0 �9X0 sech2 X0 − 3 tanh X0

− 8 sech2 X0 tanh X0�

+ 24 tanh X0 �sech X0 + sech3 X0��1 − 2 sech2 X0�

− 6 sech X0 tanh X0 �1 − 2 sech2 X0�2� d X0,

and

� = �
−�

�

sech X0 tanh X0

��24 tanh X0 �1 − 2 sech2 X0��sech X0 + sech3 X0�

− 3 sech X0 tanh X0 �1 − 2 sech2 X0�2

− 6 sech X0 tanh2 X0 f4�X0�� d X0.

Numerically,

� = 4.159 − i 0.3258, � = 1.022 + i 0.1623.

We note that the velocity enters the amplitude equation
�72� as a coefficient in front of one of its two driving terms.
On the other hand, Eq. �71� implies that V does not tend to
zero—at least on the time scale T1. In order to check whether
the velocity decays on a longer time scale and hence whether
the translational motion can drive the wobbling, we take the
expansion to higher orders.

The cubic correction has the form

�3 = �3
�0� + �3

�1�ei�0T0 + c.c.

+ �3
�2�e2i�0T0 + c.c. + �3

�3�e3i�0T0 + c.c.

The zeroth-harmonic component �3
�0� is evaluated to be zero,

and the coefficient of the first-harmonic component is

�3
�1� = 
A
2Aud�X0� − ��2A + i�0VA� X0 sech X0 tanh X0

+ i�0VHu1�X0� + H
A
2u2�X0� + HA2u3�X0�

+ HA2u4�X0� − 2
3 i�0�� + i�0R��3 − 4 sech2 X0�

+ H2Au5�X0� + H2A�u6�X0� + H3u7�X0� . �73�

Here ud�X0� was defined in the previous section as the
bounded solution of Eq. �54�, and the functions un�X0� �n
=1, . . . ,7� are the bounded solutions of the following nonho-
mogeneous equations:

�L − 3/2�u1 = − 4 sech2 X0 tanh X0 +
3�

4
sech X0 tanh X0,

�L − 3/2�u2 = − 6 sech2 X0 tanh2 X0 �1 − 2 sech2 X0�

+ 24 sech2 X0 tanh2 X0 �1 + sech2 X0�

− 6 sech2 X0 tanh X0 �2 tanh X0 − 3X0�

��1 − 2 sech2 X0�

− 6 sech X0 tanh2 X0 f3�X0� ,
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�L − 3/2�u3 = 3 sech2 X0 tanh2 X0 �7 + 10 sech2 X0�

+ 12 sech2 X0 tanh X0 f1�X0� ,

�L − 3/2�u4 = − 6 tanh X0 f1�X0� ,

�L − 3/2�u5 = − 6 tanh X0 �1 − 2 sech2 X0�f3�X0�

+ 24 sech X0 tanh X0 �1 + sech2 X0�

��1 − 2 sech2 X0�

− 6 sech X0 tanh2 X0 �9X0 sech2 X0

− 3 tanh X0 − 8 sech2 X0 tanh X0�

− 6 sech X0 tanh X0

��1 − 2 sech2 X0�2 − 3
2� sech X0 tanh X0,

�L − 3/2�u6 = − 6 sech X0 tanh2 X0 f4�X0�

+ 24 sech X0 tanh X0 �1 + sech2 X0�

��1 − 2 sech2 X0� − 3 sech X0 tanh X0

��1 − 2 sech2 X0�2 − 3
2� sech X0 tanh X0,

and

�L − 3/2�u7 = − 6 tanh X0 �1 − 2 sech2 X0�f4�X0�

− 3�1 − 2 sech2 X0�3

− 6 sech X0 tanh2 X0 �9X0 sech2 X0

− 3 tanh X0 − 8 sech2 X0 tanh X0� .

Like the functions ud and ue of the previous section, the
solutions un�X0� are defined up to the addition of a multiple
of yw. As in the previous section, this does not provide any
extra degrees of freedom and the multiple of yw cancels out
in the integrals � and � below. The solutions u1, u5, and u6
are odd, while u2, u3, u4, and u7 can be chosen to be even
functions. The only fact about u1 that we need is that it is a
real solution; owing to its reality, u1 does not contribute to
the solvability conditions below. The solutions un�X0� with
n=2, . . . ,7 are determined using the variation of parameters
and numerical integration.

To eliminate the quasisecular term proportional to
X0 sech X0 tanh X0 in Eq. �73�, we set �2A=−i�0VA.

It is not necessary to calculate the second- and the third-
harmonic components, �3

�2� and �3
�3�, as these do not contrib-

ute to the zeroth harmonic at fourth order in �, where the
leading-order behavior of V will reveal itself. The equation
arising at O��4� is Eq. �55�, with

F4 = ��0�1 − D0D1��3 + ��0�2 − D0D2��2 + 1
2 ��1

2 − D1
2��2

+ ��0�3 − D0D3��1 + ��1�2 − D1D2��1 − 3�1
2�2

− 6�0�1�3 − 3�0�2
2 + VD0�0�2 + VD0�1�1 + 1

2D2V�0�0

− 1
2V2�0

2�0 − RD0
2�2 − �D0�2 + �V�0�0.

The solvability condition for the zeroth harmonic yields

D2V = − 2�V −
3

2
�H
A
2A + c.c. −

3

2
�H3A + c.c.

+
3�

4
i�0H�� − i�0R�A + c.c., �74�

where

� = �
−�

�

sech2 X0 �24 sech2 X0 tanh2 X0 �sech X0 + sech3 X0�

− 3 sech2 X0 tanh2 X0 f3
��X0�

− 6 sech3 X0 tanh X0 �2 tanh X0 − 3X0��1 − 2 sech2 X0�

− 6 sech X0 tanh X0 �1 − 2 sech2 X0�f1�X0�

− 6 sech X0 tanh2 X0 u3�X0� − 6 sech X0 tanh2 X0 u4�X0�

− 6 sech X0 tanh2 X0 u2
��X0�

+ 24 sech2 X0 tanh X0 �2 tanh X0 − 3X0�

��sech X0 + sech3 X0�

− 6 tanh X0 �1 − 2 sech2 X0�ud�X0�

− 6 tanh X0 f1 �X0� f3
��X0�� dX0,

and

� = �
−�

�

sech2 X0 �− 6 sech X0 tanh2 X0 u7
��X0�

− 6 tanh X0 �1 − 2 sech2 X0�u5�X0�

− 6 tanh X0 �1 − 2 sech2 X0�u6
��X0�

+ 24�1 − 2 sech2 X0�2 �sech X0 + sech3 X0�

+ 18 sech X0 tanh X0�1 + 2 sech2 X0��9X0 sech2 X0

− 3 tanh X0 − 8 sech2 X0 tanh X0�

− 3�1 − 2 sech2 X0�2 f3�X0� − 6 tanh X0 f3�X0� f4
��X0�

− 6 sech X0 tanh X0 �1 − 2 sech2 X0� f4
��X0�� dX0.

Numerically,

� = − 2.005 − i 0.3823, � = − 12.21 − i 0.5706.

Writing a=�A as before, and combining D1A=0 with Eq.
�72� with the help of the chain rule, we obtain the amplitude
equation in terms of the unscaled parameters,

ȧ = − �a − i �0� a +
1

2
i�0 
a
2a +

3�

4
vh

−
1

2
i�0 �h2a −

1

2
i�0 �h2a� + O�
a
5� . �75a�

Similarly, combining Eq. �71� with Eq. �74�, we arrive at

v̇ = − 2�v −
3

2
�h
a
2a + c.c. −

3

2
�h3a + c.c.

+
3�

4
i�0 h�� − i�0��a + c.c. + O�
a
5� . �75b�
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B. Reduced dynamics in three dimensions

Thanks to the a-dependent driving terms in Eq. �75b�, the
direct driving can sustain the translational motion of the
kink, in contrast to the parametrically driven cases we have
considered. Figure 4 shows an example of the kink acceler-
ated by the 1:1 direct driving force which simultaneously
excites the wobbling. Note that results from the three-
dimensional system �75� are in excellent agreement with pre-
dictions of the full partial differential equation — not only
after the dynamics have settled to a stationary regime but
also during the transient phase.

The detailed analysis of the three-dimensional system
�75� will be reported elsewhere; here, we limit ourselves to
several basic observations. Firstly, it is straightforward to see
that, when h=0, the trivial fixed point a=v=0 is the only
attractor available in the system. Secondly, numerical simu-
lations of the three-dimensional system show that as h is
increased for fixed � and �, a nontrivial fixed point bifurcates
from the point a=v=0 �see Figs. 5�a� and 5�b��. For lower
values of �, the bifurcation is subcritical �as in the case
shown in Fig. 5�; for higher �, it is supercritical. As h ap-
proaches some critical driving strength hc, both the 
a
 and
the v components of the nontrivial fixed point tend to infin-
ity. Finally, in the region h�hc, there are no stable fixed
points. In this region, simulations of system �75� reveal a
blowup regime, where the functions 
a�t�
 ,v�t� grow without
bounds.

To determine the critical value hc, we assume that the
blowup regime is self-similar, that is, that the growth of v is
pegged to that of a. This assumption can be formalized by
expanding v and Arg�a� in powers of large 
a
 as follows:

v = V3
a
3 + V1
a
 + V−1
a
−1 + ¯ , �76a�

a = 
a
e−i�, � = �0 + �−2
a
−2 + �−4
a
−4 + ¯ . �76b�

Substituting these expansions in Eqs. �75a� and �75b� and
equating coefficients of like powers of 
a
 to zero, we can
evaluate the coefficients Vn and �n to any order—this justi-
fies the assumption.

In particular, setting to zero the coefficients of 
a
3 in Eq.
�75a� gives

ei�0 = − i





, V3 =

2�0


3�

1

h
. �77�

On the other hand, substituting Eqs. �76� in Eq. �75b�, we get
an equation describing the growth of 
a�t�
,

d

dt

a
 = r
a
 + O�
a
−1� ,

where the growth rate

r = −
2

3
� −

�e−i�0 + ��ei�0

2

h

V3
.

Substituting for ei�0 and V3 from Eq. �77�, this becomes

r = −
2

3
� −

3�

2�0


�e−i�0 + ��ei�0

2
h2. �78�

The growth of 
a
 is due to the h2 term in Eq. �78� which has
a positive coefficient; the growth is damped by the � term. If
we reduce h keeping � fixed, then, at h=hc where

v

|a|

t

v|a|

0.014

0.012
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FIG. 4. An example of the kink being accelerated by the 1:1
direct driving. Here h=0.012, �=1�10−3, and �=0. The crosses
are measured values from numerical simulations of the original par-
tial differential equation �63�, while the lines are the predictions of
the amplitude equations �75�.

(a)

h

|a|

0.0130.0120.0110.010.0090.008
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0

(b)

h

v

0.0130.0120.0110.010.0090.008

0.012

0.01

0.008

0.006
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0.002

0

(b)

(a)

FIG. 5. The hysteresis loop in the 1:1 directly driven �4 equa-
tion with �=10−3 and �=−10−4. The driving strength is increased
from h=8�10−3 to 13�10−3 in increments of 0.2�10−3 and then
reduced back to 8�10−3. The “crosses” are measured values from
numerical simulations of the partial differential equation �63�
whereas the continuous and the dashed lines show the stable and the
unstable fixed points of the amplitude equations �75�.
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hc = 8�0

9�



2

i��� − ����1/2

�1/2 = 0.6523�1/2, �79�

the growth rate will become equal to zero. At this point the
blowup regime is replaced with a stable fixed point—which,
however, still has large values of 
a
 and v. �Reducing h
further, the fixed point will persist but the similarity relations
�76� will no longer be valid.� Note that the critical value �79�
does not depend on �. Numerical simulations of Eqs. �75�
carried out for a variety of � and � reproduce this value of hc
to a high accuracy.

As h is increased toward hc and neither 
a
 nor v compo-
nent of the stationary point is small any longer, system �75�
ceases to provide any reliable description for the dynamics of
the wobbler. A natural question that arises here is what dy-
namical regime the kink settles to for h just below hc and for
h above hc. In other words, we want to know what happens
when the wobbler is driven with the small strength h of order
�1/2 �so that conditions �64� are still in place� for which our
finite-dimensional approximation is no longer valid. To an-
swer this, we have conducted a series of numerical simula-
tions of Eq. �63� with h raised from h�hc to h�hc. The
simulations reveal that in the region inaccessible to our
finite-dimensional approximation, the kink settles to wob-
bling with a constant amplitude, which is accompanied by its
translational motion with a constant velocity �see Fig. 6�.
The numerically detected values of a and v are of order �1/3

in this region; this accounts for the inadequacy of our ap-
proximation, which was based on the assumptions a
=O��1/2� and v=O���.

The behavior of the 1:1 externally driven wobbling kink
above �and just below� the critical value is an issue to which
we are planning to return in the near future. To derive the
correct set of amplitude equations, we will need to use our
asymptotic approach with modified scalings for a and v.

C. 1:1 directly driven wobbler and its radiation

Up to O��2�, the perturbation expansion gives

��x,t� = tanh��1 − 3
a
2 + 9h2�
� + �a sech 
 tanh 


+ h�1 − 2 sech2 
�� ei�t + c.c. + 2
a
2sech2 
 tanh


− 4h�a + a�� sech
 �1 + sech2 
�

− h2�3 tanh 
 + 8 sech2 
 tanh 
�

+ �a2f1�
� + haf3�
� + h2f4�
�� e2i�t + c.c. + O�
a
3� .

�80�

For sufficiently large t, the variable 
 is given by x−vt−x0,
where x0 is determined by the initial conditions. The com-
plex constant a and the real v are components of a stable
fixed point �trivial or nontrivial� of system �75�. The func-
tions f1, f3, and f4 are given by Eqs. �12�, �69�, and �70�. As
in all previously considered driving regimes, the 1:1 direct
driver excites a standing wave with the amplitude propor-
tional to the driver’s strength and frequency equal to the
frequency of the driving �first two terms in the second line in
Eq. �80��. The standing wave includes also the second and
the zeroth harmonics, both with the amplitudes of order h2

�terms in the fourth and the last line�.
Like the expansions in the previous sections, Eq. �80� is

only valid at distances 


=O�1�. To describe the waveform
at longer distances, we consider the outer expansions

� = � 1 + ��Hei�0T0 + c.c.� + �2�2 + �3�3 + ¯

in the regions X0�0 and X0�0, respectively. Substituting in
Eq. �65�, the order �2 gives

�2 = � 3H2 �
3
4H2e2i�0T0 + c.c. + J�B�ei���T0−k�X0� + c.c.

�81�

Here the top and the bottom signs pertain to the X0�0 and
the X0�0 regions, respectively. The amplitudes B� are func-
tions of the slow variables: B�=B��X1 , . . . ;T1 , . . .� and the
normalization coefficients J� have been introduced for later
convenience. Matching the outer solution �81� to the inner
solution �9� with coefficients as in Eqs. �66�–�68�, and choos-
ing J�= � �2− ik0�, we obtain ��=2�0, k�= �k0, and

B��0,0, . . . ;T1,T2, . . .�

= 1
8J2

� �A2�0,0, . . . ;T2,T3, . . .� − 7
2H2�

� i 15
32k0 J1

�HA�0,0, . . . ;T2,T3, . . .� . �82�

Equations �82� are the boundary conditions for the amplitude
fields B+ and B−. The equations of motion for these fields are
obtained at the order �3 of the outer expansion. Namely, the
solvability conditions for �3

�2�, the coefficient of the second
harmonic at the order �3, give

D1B+ + c0�1B+ = 0, X1 � 0, �83a�

D1B− − c0�1B− = 0, X1 � 0, �83b�

where c0=k0 / �2�0�.
As before, the analysis of the linear transport equations

�83� under the boundary conditions �82� is straightforward.
The initial condition B+�X1 , . . . ;0 , . . .� defined in X1�0,
propagates unchanged to the right and the initial condition
B−�X1 , . . . ;0 , . . .� defined in X1�0, propagates unchanged to
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FIG. 6. Results of numerical simulations of Eq. �63� with h
raised beyond the critical value hc=0.021. As in Fig. 5, in this plot
�=10−3 and �=−10−4. The main panel shows values of 
a
 and the
inset values of v as a function of h. The “crosses” represent mea-
surements obtained as h is increased from 0.0005 to 0.05 in steps of
1.5�10−3; the “pluses” are obtained as h is decreased back to
0.0005. An “asterisk” results when a “plus” is superimposed over
the “cross” at the same point.
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the left, both with the velocity c0. In the expanding region
−c0T1�X1�c0T1, the amplitudes B� are constants defined
by conditions �82�. In terms of the second-harmonic radia-
tion, this corresponds to two groups of radiation waves, di-
verging to the left and to the right and leaving a sinusoidal
waveform of constant amplitude in between.

D. Qualitative analysis

The reason why the external force does not couple di-
rectly to the wobbling mode in the case of the 1:1 external
driving �as it did in the case of the 1:1 parametric resonance�
is the discrepancy in the parity of the driving profile and the
wobbling mode. Instead, there are three indirect amplifica-
tion mechanisms at work in this case. In each of these, the
central role is played by the even-parity standing wave ex-
cited by the driver. Firstly, the square of this standing wave
couples to the wobbling mode via the term �3�1

3. Secondly,
the second and the zeroth harmonics of the standing wave as
well as the second-harmonic radiation excited by the stand-
ing wave couple to the wobbling mode via the term
�3�0�1�2. Thirdly, when the kink moves relative to the
standing wave, the odd-parity wobbling mode acquires an
even-parity component which then couples to the standing
wave. �This process is accounted for by the term �3VD0�0�1
in Eq. �65�.� Since the first two mechanisms rely upon a
quadratic superharmonic of the induced standing wave �with
the amplitude of the superharmonic being proportional to
h2�, and since the velocity of the kink �which determines the
amplitude of the even component of the wobbling mode in
the third mechanism� is small, the 1:1 direct resonance is
weak.

VII. CONCLUDING REMARKS

In this paper, we have used the asymptotic method to
study the wobbling kink driven by four types of resonant
driving force, viz., the 1:1 and 2:1 parametric and 1:2 and
1:1 external driving. We have demonstrated the existence of
resonance �i.e., the existence of sustained wobbling with
nondecaying amplitude despite losing energy to radiation
and dissipation� in all four cases. This conclusion �verified in
direct numerical simulations of the corresponding partial dif-
ferential equation� agrees with results of Quintero et al. who
also demonstrated the existence of the resonance in the 1:1
parametrically and 1:2 directly driven �4 equations �2–4�.
However, we are in disagreement with these authors on the
1:1 directly driven, damped equation. Namely, our method
does capture the resonance in this case, whereas their
collective-coordinate approach does not. �In fairness to the
pioneering work of Quintero et al., their direct numerical
simulations did reveal a resonant peak at the frequency of the
driver equal to the natural wobbling frequency of the
kink—an experimental result which, however, did not recon-
cile with their collective-coordinate predictions �2,3�.�

In each of the four driving regimes that we have consid-
ered in this paper, we have derived a system of equations for
the complex amplitude of the wobbling coupled to the veloc-

ity of the kink. The predictions based on this dynamical sys-
tem are in agreement with results of the direct numerical
simulation of the full partial differential equation. In three
out of four cases considered, the velocity of the kink is
shown to decay to zero as time advances, as a result of which
the dimension of this dynamical system reduces from 3 to 2.
Only in one case �the case of the 1:1 directly driven wobbler�
does the velocity of the kink not necessarily decay to zero. In
this latter case the wobbling of the kink is accompanied by
its motion with nonzero velocity.

Each of the four dynamical systems derived here gives
rise to a bifurcation diagram featuring bistability and hyste-
retical transitions in the wobbling amplitude. In the 1:1 para-
metric and the 1:2 direct resonances, the bistability is be-
tween two nonzero values of the wobbling amplitude,
whereas in the 2:1 parametrically and the 1:1 directly driven
�4 equations, one of the two stable regimes involves a non-
zero and the other one involves a zero amplitude. It is fitting
to note here that the collective-coordinate approach �2–4�
does not capture the bistability and the hysteresis.

In Sec. IV, we ranked the two parametric resonances ac-
cording to the amplitude of the stationary wobbling resulting
from the driving with a certain reference strength h. Adding
to this hierarchy the two direct resonances produces the fol-
lowing ranking. The 1:1 parametric resonance is the stron-
gest of the four cases; in this case, the amplitude of the
stationary wobbling, a is of order h1/3. The 2:1 parametric
resonance is the second strongest; in this case, the kink re-
sponds with the wobbling amplitude a�h1/2. The 1:2 direct
resonance has a�h2/3 and the 1:1 direct resonance is the
weakest: a�h. �The fact that the harmonic direct resonance
is weaker than the superharmonic one is in agreement with
results of �2,3� where it was established in the undamped
situation.�

Our asymptotic approach also allows one to rank the reso-
nances according to the widths of the corresponding Arnold
tongues on the “driving strength vs driving frequency” plane.
The 1:1 parametric resonance is the widest one; in this case,
the resonant region is bounded by the curve h��3/2. The 2:1
parametric resonance is the second widest; in this case, the
Arnold tongue has h��. The 1:2 direct resonance has
h��3/4 and the 1:1 direct resonance is the narrowest:
h��1/2. We should also mention that the 1:1 parametric and
the 1:2 direct resonances have no threshold in the strength of
the driver, whereas the 2:1 parametric and 1:1 direct reso-
nances occur only if the driving strength exceeds a certain
threshold value.
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